Module Specifications.
Current Academic Year 2024 - 2025
All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).
As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.
Date posted: September 2024
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coursework Only |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description This module will equip students with knowledge of methods for processing, ingesting, cleaning and reformatting data sets using a variety of tools. It will introduce exploratory data analysis through interactive visualisation and develop student skills in creating effective data visualisations. The module will enable students to develop skills in communication, visualisation design and the ability to critique the effectiveness of data visualisations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes 1. Explain the data analysis pipeline and the stages of data processing, transformation, cleaning, management, visualisation and communication. 2. Identify and describe relevant data formats and standards. 3. Select and perform appropriate data cleaning operations using different tools and techniques and documenting the processes (e.g., notebooks). 4. Design and create effective interactive data visualisations using both dedicated applications (e.g., Tableau, Spreadsheets) and developer libraries (e.g., matplotlib, seaborn, bokeh). 5. Understand the requirements for communicating data analysis through visualisations and critique both their own and other visualisations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indicative Content and Learning Activities
Data processingdata loading, formats, metadata, conversion, basic APIs to ingest data, using notebooks, standardsData cleaningidentifying possible errors, handling null values, geolocation issues, tools to clean data setData visualisationselecting appropriate graph types, creating interactive visualisations, using common visualisation tools, critiquing visualisationsCommunicationdesign rules for visualisation, creating data exploration notebooks recording processes, presenting data visualisations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indicative Reading List
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||