Module Specifications.
Current Academic Year 2024 - 2025
All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).
As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.
Date posted: September 2024
| |||||||||||||||||||||||||||||||||||||||||||
Repeat examination Repeat Examination: Reassessment of this module will consist of a repeat examination. |
|||||||||||||||||||||||||||||||||||||||||||
Description This module aims to develop a fundamental understanding of techniques which make possible reliable digital communications over wireless fading channels. Building on the analysis of simple digital modulation schemes over noisy non-fading channels it then introduces the concept of fading, along with its key physical characterisations (fast, slow, flat and frequency selective). These are derived in terms of the underpinning propagation phenomena and quantified in terms of key channel statistical metrics such as coherence bandwidth and coherence time. The module then examines the use of diversity techniques to improve the performance of digital modulation in fading channels. These include time, frequency and space diversity. In particular we shall examine the use of multiple antenna (MIMO) technology and space time coding. Emerging channel modelling techniques such as ray tracing will be introduced. | |||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes 1. �������� ��� ���Evaluate the performance of digital modulation schemes for noisy AWGN channels and band-limited channels. 2. Describe the physical processes that generate fading as well as the simple metrics used to characterize channels such as coherence bandwith and coherence time. 3. Describe the wireless channel as a linear time varying system and derive a discrete-time baseband model 4. Analyse the performance of signalling techniques in a variety of fading channels. 5. Describe and analyse the effectiveness of time, frequency and space diversity techniques 6. Analyse the use of CDMA and OFDM to allow multiple access and manage interference. 7. Extend statistical channel models to the MIMO case and derive simple beamforming and spatial multiplexing techniques. 8. Numerically model selected topics in digital wireless communications using Matlab. | |||||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||
Indicative Content and Learning Activities
Review of required mathematics:Fourier analysis, probability and random processes, systems.Introduction to digital communications and wireless communicationssource coding, digital modulation, propagation, channel coding, fundamental constraints, capacity, radiowave propagation, cellular systems and networks,Baseband digital communications:binary bandwidth limited signals and inter-symbol interference, noise and bit errors, adaptive equalization. Band pass digital systems: Binary PSK and QPSK.The wireless channel:physical modelling for wireless channels, reflections, the effect of mobility, the channel as a linear time varying system, Doppler spread and coherence time, delay spread and coherence bandwidth, statistical channel models, Rayleigh and Ricean fading,Coherent detection in Rayleigh fading channels.Time diversity – repetition coding, frequency diversity: ISI equalization, direct sequence spread spectrum, orthogonal frequency division multiplexing. Channel estimation and non coherent detection.Modelling of MIMO fading channels:channel matrix, statistical modelling in angular domain, degrees of freedom and diversity. Deterministic channel modelling and ray tracing. | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Indicative Reading List
| |||||||||||||||||||||||||||||||||||||||||||
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||