DCU Home | Our Courses | Loop | Registry | Library | Search DCU
<< Back to Module List

Module Specifications.

Current Academic Year 2024 - 2025

All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).

As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.

Date posted: September 2024

Module Title Financial Econometrics
Module Code EF5162 (ITS) / FBA1024 (Banner)
Faculty DCU Business School School DCU Business School
Module Co-ordinator-
Module Teachers-
NFQ level 9 Credit Rating 7.5
Pre-requisite Not Available
Co-requisite Not Available
Compatibles Not Available
Incompatibles Not Available
None
Resubmit take home assignments
Description

Introduction to the theory and practice of financial time series analysis. Students will learn statistical methods to characterize empirical features of financial time series data, apply relevant time series methods to analyze data using appropriate statistical software, critically evaluate empirical results reported in academic journal articles.

Learning Outcomes

1. analyse financial time series data using appropriate statistical methods and software
2. explain theoretical properties of financial time series models
3. validate past empirical analyses published in academic journals
4. apply financial econometric techniques to quantitatively address practical issues in finance



Workload Full-time hours per semester
Type Hours Description
Lecture36lectures and in-class programming
Independent Study72readings and review of lectures
Assignment Completion79.5review for in-class test and submission of assignment reports
Total Workload: 187.5

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities

Empirical characteristics of asset returns
autocorrelation, skew, kurtosis, time aggregation, volatility clustering, long memory, leverage, trading volume.

Volatility
nonparametric measurement, GARCH-type models, forecasting, news impact curve, stochastic volatility, option implied volatility.

Ultra high frequency data
market microstructure, stylized facts, bid-ask bounce, irregularly spaced data, realized variance, jumps.

Statistics of extremes
extreme value theory, generalized extreme value distribution, threshold exceedance, generalized Pareto distribution.

Assessment Breakdown
Continuous Assessment100% Examination Weight0%
Course Work Breakdown
TypeDescription% of totalAssessment Date
AssignmentTake home assignments60%As required
In Class TestIn-class test40%As required
Reassessment Requirement Type
Resit arrangements are explained by the following categories:
Resit category 1: A resit is available for both* components of the module.
Resit category 2: No resit is available for a 100% continuous assessment module.
Resit category 3: No resit is available for the continuous assessment component where there is a continuous assessment and examination element.
* ‘Both’ is used in the context of the module having a Continuous Assessment/Examination split; where the module is 100% continuous assessment, there will also be a resit of the assessment
This module is category 1
Indicative Reading List

  • Ruey Tsay: 0, Analysis of Financial Time Series, 3rd,
  • Stephen Taylor: 0, Asset Price Dynamics, Volatility, and Prediction,
  • Alexander McNeil and Rudiger Frey and Paul Embrechts: 0, Quantitative Risk Management, revised,
Other Resources

None
Module for new MSc in Finance as approved by Programme Board 26th March 2014. Submitting final document for T&L to Jonathan 28th March 2014.

<< Back to Module List