DCU Home | Our Courses | Loop | Registry | Library | Search DCU
<< Back to Module List

Module Specifications.

Current Academic Year 2024 - 2025

All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).

As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.

Date posted: September 2024

Module Title Mathematical Thinking
Module Code MS147 (ITS) / MTH1031 (Banner)
Faculty Science & Health School Mathematical Sciences
Module Co-ordinatorSinead Breen
Module TeachersBrien Nolan, Emma Owens
NFQ level 6 Credit Rating 5
Pre-requisite Not Available
Co-requisite Not Available
Compatibles Not Available
Incompatibles Not Available
None
Array
Description

This module introduces students to some different general aspects of mathematics, including the nature and use of logic in mathematics, mathematical language, mathematical modelling and problem solving in mathematics.

Learning Outcomes

1. Apply logic in mathematical arguments
2. Demonstrate an appreciation of the importance and nature of proof in mathematics
3. Demonstrate insights on different views of the nature of mathematics
4. Develop proficiencies in problem solving and in the teaching of problem solving
5. Learn how to use mathematical language correctly
6. Develop an awareness of the concepts of growth and fixed mindsets and how these impact the learning of mathematics



Workload Full-time hours per semester
Type Hours Description
Lecture10Lectures on course material.
Tutorial10Workshops
Independent Study95Independent work on course material and exercises.
Online activity10Asynchronous activities
Total Workload: 125

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities

Mathematics: history & philosophy
Introduction to philosophies of mathematics and their historical development, with a focus on the emergence of axiomatic approaches and mathematics as a problem solving activity

Mathematical logic, language and mathematical proof.
The role of definitions in mathematics; mathematical statements; the need for mathematical proof; mathematical logic; different types of proof: induction, working forwards-backwards, proof by contradiction, proof by contrapositive argument; nomenclature: conjectures, lemmas, propositions, theorems, corollaries etc; the philosophy of mathematical proof; the creation of new mathematics.

Mathematical problem solving.
Structured approaches to problem solving in mathematics: Mason's Rubric Writing. Approaches to teaching problem-solving in mathematics. Designing mathematical problems.

Mathematical Mindsets
Fixed and growth mindsets in mathematics.

Assessment Breakdown
Continuous Assessment100% Examination Weight0%
Course Work Breakdown
TypeDescription% of totalAssessment Date
AssignmentWorkshop assignments.30%As required
ParticipationCompletion of assigned tutorial tasks.20%As required
AssignmentProblem solving assignments40%As required
AssignmentComplete online course on Mathematical Mindsets10%Week 3
Reassessment Requirement Type
Resit arrangements are explained by the following categories:
Resit category 1: A resit is available for both* components of the module.
Resit category 2: No resit is available for a 100% continuous assessment module.
Resit category 3: No resit is available for the continuous assessment component where there is a continuous assessment and examination element.
* ‘Both’ is used in the context of the module having a Continuous Assessment/Examination split; where the module is 100% continuous assessment, there will also be a resit of the assessment
This module is category 1
Indicative Reading List

  • J. Mason,L. Burton,K. Stacey: 2011, Thinking Mathematically, Pearson Higher Ed, 027372892X
  • Philip J. Davis and Reuben Hersh: 1981, The Mathematical Experience, Penguin,
Other Resources

43866, Website, 0, St Andrew's History of Mathematics Website, http://www-groups.dcs.st-andrews.ac.uk/~history/, 43867, Website, Pearson Education Online, 0, MyMathLab, http://global.mymathlabglobal.com/,

<< Back to Module List