DCU Home | Our Courses | Loop | Registry | Library | Search DCU
<< Back to Module List

Module Specifications.

Current Academic Year 2024 - 2025

All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).

As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.

Date posted: September 2024

Module Title Stochastic Modelling
Module Code MS308 (ITS) / MTH1050 (Banner)
Faculty Science & Health School Mathematical Sciences
Module Co-ordinatorMartin Venker
Module Teachers-
NFQ level 8 Credit Rating 7.5
Pre-requisite Not Available
Co-requisite Not Available
Compatibles Not Available
Incompatibles Not Available
Repeat examination
Array
Description

To give a comprehensive introduction to Markov chains, Markov jump processes and their application to actuarial science.

Learning Outcomes

1. Construct Markov chain models for actuarial and financial processes.
2. Analyse any given chain in a systematic way, including determining its asymptotic behaviour.
3. Prove the main theorems governing Markov chains in discrete and continuous time.
4. State the definitions of the main concepts underlying the theory of Markov chains and demonstrate an understanding of these through examples and counter-examples.



Workload Full-time hours per semester
Type Hours Description
Lecture36No Description
Tutorial12No Description
Independent Study150No Description
Total Workload: 198

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities

Stochastic Modelling
Review of basic probabilistic concepts, the various types of stochastic processes, stationarity, Markov processes, the Chapman-Kolmogorov equations, stationary probability distributions. [CS2 - 3.1]

Markov Chains
Solution of the Chapman-Kolmogorov equation in matrix form, transition graph, finding the stationary distribution, actuarial examples; two-state chains; the limiting distribution of finite Markov chains, irreducibility and aperiodicity, exponential convergence; infinite Markov chains, criteria for recurrence, the limiting distribution and its relation to mean recurrence times; applications: queues, random walks with various boundary conditions. [CS2 - 3.2]

Markov Jump Processes
The infinitesimal generator, the forward and backward equations, solution in exponential form; holding times, exponential distribution, jump chain; the limiting distribution of a finite Markov jump process and its connection to mean recurrence times; the case of infinite state spaces, the integral form of the backward equation, the minimal process, conservative processes; the Poisson process and actuarial models; inhomogeneous Markov jump processes, time-dependent transition rates, the backward equation in differential and integral forms, residual holding times. [CS2 - 3.3].

Assessment Breakdown
Continuous Assessment25% Examination Weight75%
Course Work Breakdown
TypeDescription% of totalAssessment Date
In Class Testn/a25%Week 9
Reassessment Requirement Type
Resit arrangements are explained by the following categories:
Resit category 1: A resit is available for both* components of the module.
Resit category 2: No resit is available for a 100% continuous assessment module.
Resit category 3: No resit is available for the continuous assessment component where there is a continuous assessment and examination element.
* ‘Both’ is used in the context of the module having a Continuous Assessment/Examination split; where the module is 100% continuous assessment, there will also be a resit of the assessment
This module is category 3
Indicative Reading List

  • Bhattacharya, R.N., and Waymire R.C: 1990, Stochastic Processes with Applications, Wiley, NewYork,
  • Grimmett, G.R. and Stirzaker, D.R.: 1992, Probability and Random Processes, 2-nd, Oxford UP, Oxford,
  • Norris, JR: 1997, Markov Chains, Cambridge UP, Cambridge,
  • A.N. Other: 0, Acted material for CT4 subject , models ,
Other Resources

None

<< Back to Module List