DCU Home | Our Courses | Loop | Registry | Library | Search DCU
<< Back to Module List

Module Specifications.

Current Academic Year 2024 - 2025

All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).

As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.

Date posted: September 2024

Module Title Probability & Finance I (Advanced)
Module Code MS537 (ITS) / MTH1074 (Banner)
Faculty Science & Health School Mathematical Sciences
Module Co-ordinatorJohn Appleby
Module Teachers-
NFQ level 9 Credit Rating 7.5
Pre-requisite Not Available
Co-requisite Not Available
Compatibles Not Available
Incompatibles Not Available
None
Array
Description

This module provides a self-contained treatment of the axiomatic theory of probability, including the theory of expectation (integration) and conditional expectation. While no prior knowledge of these topics is assumed, some familiarity with abstract mathematical reasoning is expected. The module contains also a brief introduction to discrete-time martingales, concentrating on their role in the theory of discrete-time finance, and especially in the theory of option pricing. No prior knowledge of finance is assumed. The knowledge of proofs of certain deep theorems, the emphasis on interpretation of theoretical results in a financial context and on financial model building, as well as the appraisal of the strengths and weaknesses of this financial model, and the pricing of exotic options in this framework, are among the features which distinguish this module from a corresponding undergraduate module (MS437). The end of semester examination is of three hours’ duration and will require students to answer all questions on the paper.

Learning Outcomes

1. State and interpret the main definitions relevant to advanced probability and asset pricing and demonstrate a mastery of the ideas underlying them through examples and counter-examples
2. Deduce important properties of probability measures from the axioms and defend the necessity of the axiomatic approach to probability theory for uncountable sample spaces
3. Prove measurability results for random variables and to interpret these results in a financial context
4. Prove the main theorems of expectation theory, and to construct examples and counter-examples to demonstrate the sharpness of these results
5. Derive the main properties of conditional expectations from their geometric characterisation and to compare and judge the effectiveness of this approach with more elementary definitions
6. Apply martingale methods and arbitrage arguments to discrete-time financial models, and to construct novel portfolios to achieve arbitrage pricing
7. Calculate the price of American options in discrete time binomial models
8. Prove results in the theory of option pricing by applying the method of pricing by replication
9. Prove the fundamental theorems of asset pricing and interpret these results in the context of efficient market theory
10. Critique the assumptions underlying discrete time financial models



Workload Full-time hours per semester
Type Hours Description
Lecture36No Description
Tutorial12No Description
Independent Study150No Description
Total Workload: 198

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities

Events
Probability triple, the elementary approach, general sample space. The axioms of probability, sigma algebras, probability measures. Properties of probability measures. Demonstrating the necessity of axiomatic construction. Borel sigma algebra, extension of probabilities.

Random Variables
Measurability, elementary (closure) properties, limit of sequences of random variables, probability distribution functions.

Expectation
Simple random variables, approximation of positive random variables by simple ones. Expectation as an integral over the sample space. The main limit theorems: monotone convergence, dominated convergence, Fatou’s lemma. Properties of expectation. Variance, Chebyshev’s inequality. Expectation of functions of random variables, the moment generating function.

Conditional Expectation
Elementary definition, conditional expectation with respect to a decomposition of the sample space; optimal approximation property of conditional expectation. Conditional expectation with respect to a sub-sigma algebra as an orthogonal projection. Properties of the conditional expectation. Martingales.

Simple models of the Stock Market
Arbitrage pricing of forward contracts. Simple binomial model. Options, pricing a call by replication. Pricing American put options, and other exotic options, by recursion.

General models of the Stock Market
Arbitrage pricing of forward contracts. Simple binomial model. Options, pricing a call by replication. Pricing American put options, and other exotic options, by recursion.

Assessment Breakdown
Continuous Assessment20% Examination Weight80%
Course Work Breakdown
TypeDescription% of totalAssessment Date
In Class Testn/a20%Week 6
Reassessment Requirement Type
Resit arrangements are explained by the following categories:
Resit category 1: A resit is available for both* components of the module.
Resit category 2: No resit is available for a 100% continuous assessment module.
Resit category 3: No resit is available for the continuous assessment component where there is a continuous assessment and examination element.
* ‘Both’ is used in the context of the module having a Continuous Assessment/Examination split; where the module is 100% continuous assessment, there will also be a resit of the assessment
This module is category 3
Indicative Reading List

  • Williams,D.: 1991, Probability with Martingales, Cambridge UP,
  • Lamberton, D., and Lapeyre, B.: 1996, Introduction to Stochastic Calculus with Financial Applications, Chapman and Hall 1996., London,
Other Resources

None
Module code is MS537

<< Back to Module List