Module Specifications.
Current Academic Year 2024 - 2025
All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).
As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.
Date posted: September 2024
| |||||||||||||||||||||||||||||||||||||||||||
None |
|||||||||||||||||||||||||||||||||||||||||||
Description This module covers both classical and quantum aspects of black holes. Topics include the no-hair conjecture, black hole formation, laws of black hole mechanics, Hawking radiation and black hole thermodynamics, black hole evaporation and the information loss 'paradox'. | |||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes 1. Analyze geodesics, construct maximal analytic extensions and construct Penrose diagrams for a number of important black hole spacetimes. 2. Derive a simple model for stellar interiors and a simple model for black hole formation. 3. Demonstrate an understanding of the no-hair conjecture, including proving basic uniqueness theorems. 4. Derive the laws of black hole mechanics. 5. Demonstrate that the laws of black hole mechanics are equivalent to the laws of thermodynamics when quantum mechanical effects are considered. 6. Construct the Penrose diagram for an evaporating black hole and discuss the information loss 'paradox' and its possible resolutions. | |||||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||
Indicative Content and Learning Activities
Black Hole SolutionsSchwarzschild, Kerr, Reissner-Nordstrom and Majumdar-Papapetrou spacetimes. Maximal extensions. Penrose diagrams. Geodesics and orbits in black hole spacetimes.Black Hole FormationStellar interior solutions. Simple gravitational collapse models. Oppenheimer-Snyder collapse model.Black Hole UniquenessNo-Hair Conjecture. Uniqueness theorem for static black holes. Uniqueness theorem for stationary black holes.Black Hole MechanicsLaws of Black Hole Mechanics. Energy conditions. Hawking's Area Theorem.Black Hole ThermodynamicsQuantum physics of black holes. The Hawking effects. Laws of Black Hole Thermodynamics. Black hole entropy. Black hole evaporation. Penrose diagram for an evaporating black hole. The Information Loss 'Paradox'. | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Indicative Reading List
| |||||||||||||||||||||||||||||||||||||||||||
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||