DCU Home | Our Courses | Loop | Registry | Library | Search DCU
<< Back to Module List

Module Specifications.

Current Academic Year 2024 - 2025

All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).

As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.

Date posted: September 2024

Module Title Deep Learning
Module Code MS556 (ITS) / MTH1078 (Banner)
Faculty Science & Health School Mathematical Sciences
Module Co-ordinatorVladimir Krylov
Module Teachers-
NFQ level 9 Credit Rating 7.5
Pre-requisite Not Available
Co-requisite Not Available
Compatibles Not Available
Incompatibles Not Available
Coursework Only
Description

Deep learning is an emerging branch of machine learning that focuses on learning appropriate data representations from the data itself rather than operating with respect to a predefined model. In the first half of this course we will explore the fundamental techniques and approaches of machine learning that led to the development and success of deep learning. These include stochastic gradient decent, random forests, perceptron, support vector machines and naïve Bayes methods. After that artificial neural networks and the basics of deep learning will be introduced to demonstrate the construction of simple feed-forward and more complex convolutional neural networks. We will address the special type of deep learning architectures that is suitable for time series analysis: recurrent neural networks (RNNs), and in particular, a special type of RNNs - long short-term memory (LSTM) networks. The presentation will focus on actuarial and financial applications to ensure practical understanding of the critical machine learning and deep learning concepts such as representation, generalization, overfitting and model architecture. The lectures will be supported by computer labs demonstrating the use of the proposed methodologies using R / Keras programming language.

Learning Outcomes

1. Solve linearly separable classification problems using trees and their collections
2. Construct kernel-based machine learning methods like Support Vector Machines
3. Apply generative models to performs probabilistic machine learning modeling
4. Apply perceptron and neural networks models
5. Build, train and deploy deep neural networks, RNNs, LSTMs



Workload Full-time hours per semester
Type Hours Description
Lecture24Classes
Laboratory24Computer labs
Laboratory140Individual
Total Workload: 188

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities

Linear models and gradient decent techniques

Decision trees and ensemble learning

Online learning: perceptron, support vector machines

Generative models and naive Bayes methods

Neural networks and backpropagation

Deep learning, RNNs, LSTMs

Assessment Breakdown
Continuous Assessment100% Examination Weight0%
Course Work Breakdown
TypeDescription% of totalAssessment Date
AssignmentAssignment 133%n/a
AssignmentAssignment 233%n/a
Group assignmentAssignment 333%n/a
Reassessment Requirement Type
Resit arrangements are explained by the following categories:
Resit category 1: A resit is available for both* components of the module.
Resit category 2: No resit is available for a 100% continuous assessment module.
Resit category 3: No resit is available for the continuous assessment component where there is a continuous assessment and examination element.
* ‘Both’ is used in the context of the module having a Continuous Assessment/Examination split; where the module is 100% continuous assessment, there will also be a resit of the assessment
This module is category 1
Indicative Reading List

    Other Resources

    None

    << Back to Module List