Module Specifications.
Current Academic Year 2024 - 2025
All Module information is indicative, and this portal is an interim interface pending the full upgrade of Coursebuilder and subsequent integration to the new DCU Student Information System (DCU Key).
As such, this is a point in time view of data which will be refreshed periodically. Some fields/data may not yet be available pending the completion of the full Coursebuilder upgrade and integration project. We will post status updates as they become available. Thank you for your patience and understanding.
Date posted: September 2024
| |||||||||||||||||||||||||||||||||||||||||||
None |
|||||||||||||||||||||||||||||||||||||||||||
Description The purpose of this module is to introduce students to matrix algebra and linearity and to the notions of vector space and linear transformation. | |||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes 1. demonstrate computational skills by solving wide range of drill problems involving topics in the indicative syllabus 2. state selected definitions and theorems related to the indicative syllabus 3. solve exercises that test understanding of these definitions and theorems 4. explain arguments used to prove selected theorems in special cases 5. Demonstrate an understanding of the mechanics of change of basis | |||||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||
Indicative Content and Learning Activities
Vectors:vectors in Euclidean space, linear combinations, dot product, orthogonality, one-dimensional projection, Cauchy-Schwarz Inequality.Matrices and systems of equations:Matrices, systems of linear equations, Gauss-Jordan elimination, invertible matrices, elementary matricesDimension:subspaces, linear independence, basis, dimension, Rank-Nullity TheoremVector spacesAbstract vector spaces and linear transformation. General rank-nullity Theorem.Matrix representationsCoordinates, matrix representations, similarity | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Indicative Reading List
| |||||||||||||||||||||||||||||||||||||||||||
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||