Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description Business Analytics 2 follows from Business Analytics 1 and uses a blended learning approach to develop students’ skills in the broad area of “Data Analytics”. In this module students will develop the core Data Analytics statistical skills and more advanced data visualization and MS EXCEL spreadsheet skills. They will also be introduced to Data Management and Databases | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Explain the nature of sample error and calculate this error for a number of sample parameters 2. Choose the appropriate statistical techniques for testing a variety of statistical hypotheses 3. Build a basic Predictive Analytics model using Linear Regression and test assumptions and limitations of these models 4. Use TABLEAU to create data visualisations and a customised dashboard 5. Use advanced modelling skills in MS EXCEL 6. Be able to explain the role and applications of analytics in data driven organisations from an international perspective by demonstrating the contribution of analytics and the dissemination of information to the economic development of different geographical regions through the use of case studies. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
The role of Analytics in Organisations Analytics function in an organisation, Building an effective Analytics Team, Applications of Analytics Probability - Basic Probability - Discrete Probability Distributions; Binomial Distribution, Poisson Distribution - Normal Distribution Statistical Estimation - Sampling - Sample Error - Confidence Intervals Hypothesis / Statistical Tests Purpose of a Statistical Test, Choosing the appropriate Test, Statistical Significance / P-Value Regression and Forecasting / Predictive Analytics - Times Series Models - Linear Regression - Cause and Effect Building Models using MS EXCEL Building a basic Pricing Model using Goalseek and SOLVER - Forward Looking Business Models - Building a Model using Decision Trees and Scenario Analysis Discrete Event Simulation Models Data Management and Databases Introduction to Databases - Open Source Relationship Database based on SQL. Tables, Relationships, Joins, Subqueries, Regular Expressions - Big Data and Big Data Management Tools | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Resources
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||