Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description The aim of this course focusing on programming (SQL, Python) and visualisation (Power BI) for business analytics is to provide the skills needed to manage, analyse, and present data effectively. Mastering these three areas helps to handle the complete data analysis pipeline, from extraction and analysis to visualisation, enabling to make data-driven business decisions and present insights clearly to stakeholders. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Will understand the concepts of primary/foreign keys, of the three normal forms, and be able to design and interpret Entity-Relationship Diagrams (ERD) to model database structures effectively. 2. Will be proficient in using SQL commands such as SELECT, INSERT, UPDATE, and DELETE, along with join clauses, to retrieve, manipulate, and integrate data from multiple tables within a database. 3. Will be able to create interactive dashboards and reports that effectively visualise business data, selecting the appropriate visualisations to best represent different types of data and insights. 4. Will develop collaborative skills in data storytelling and presentation by delivering a team-based Power BI project, learning how to design Power BI reports that clearly communicate key insights and drive data-driven decision-making among stakeholders. 5. Will understand and use basic Python programming concepts, such as variables, loops, and functions, to write scripts for automating data processing tasks. 6. Will learn to utilise NumPy and Pandas libraries to efficiently manipulate, clean, and analyse data, enabling them to perform data transformations, aggregations, and basic statistical computations. 7. Will develop the ability to create visual representations of data using Matplotlib, enabling them to generate plots, charts, and graphs that effectively communicate analytical insights. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
SQL Learn to use SQL to extract and manage data from relational databases. Develop skills in writing queries, ERD, managing large datasets, performing data joins, and optimising database operations, all crucial for preparing data for analysis. Power BI Power BI for creating interactive reports, dashboards, and meaningful data visualisations. The focus is on presenting data in a user-friendly way, using visual storytelling to communicate insights effectively. Python Introduction to Python programming for data manipulation, analysis, and automation. Learn to use libraries like NumPy for numerical computations, Pandas for data handling, and Matplotlib for basic visualisations. These skills help automate data processing tasks and apply advanced analytics techniques, such as machine learning models (see in BAA1027, semester 2), to gain deeper insights. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Resources
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| This is a 10 Credit Module which is part of the 20 Credit Specialism in Business Analytics. All three moduels are corequisites | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||