Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description This module introduces students to foundational concepts in data analysis, statistics, and machine learning. It aims to develop students’ understanding of how data is represented, analysed, modelled, and interpreted in modern business and data-driven environments. Students will learn key machine learning algorithms, evaluation techniques, and statistical reasoning necessary for building predictive models and making informed analytical decisions. Python is the main programming language used in this module. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Describe and distinguish between different data types, data structures, and methods of data representation. 2. Apply descriptive and inferential statistical techniques to summarise, analyse, and interpret datasets. 3. Explain core machine learning concepts including supervised vs. unsupervised learning, model evaluation, cross-validation, and the bias–variance trade-off. 4. Construct and interpret simple predictive models using algorithms such as K-Nearest Neighbours, Decision Trees, Support Vector Machines, and Ensemble Methods. 5. Use evaluation metrics (accuracy, precision, recall, MAE, MSE, RMSE, etc.) to compare model performance and justify model selection. 6. Perform basic clustering and dimensionality-reduction techniques such as K-Means and Principal Component Analysis and interpret their outcomes. 7. Communicate analytical findings clearly using appropriate statistical and machine learning terminology. 8. Explain the structure and operation of Artificial Neural Networks, including perceptrons, activation functions, and multi-layer architectures. 9. Describe common applications of deep learning, such as image recognition, NLP, finance, and recommendation systems. 10. Evaluate the suitability of deep learning approaches for different types of predictive modelling tasks. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Data Foundations • Structured vs. unstructured data • Labeled vs. unlabeled datasets • Numerical, categorical, ordinal, and binary data • Feature representation and encoding Model Evaluation & Performance • Confusion matrix • Precision, recall, accuracy, error • Regression metrics (MAE, MSE, RMSE) Descriptive & Inferential Statistics • Central tendency • Variance • Hypothesis testing Correlation & Regression • Correlation analysis • Linear regression • Limitations and interpretation Machine Learning Concepts • Supervised vs. unsupervised learning • Train–test split • Cross-validation • Hyperparameter tuning Core Algorithms • K-Nearest Neighbours • Decision Trees • Support Vector Machines • Ensemble Methods Unsupervised Learning • K-Means Clustering • Principal Component Analysis Deep Learning • Biological Inspiration and Neuron Models • Perceptron and activation functions • Multi-layer feedforward networks (ANNs) • Backpropagation and regularization • Comparison with classical ML approaches | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Resources
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| This Module "Data Mining and Predictive Analytics" is 5 Credtis of the 20 Credits Business Analytics Specialism. All modules are co-requisites. Student choosing this specialism must take all 20 Credits. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||