Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description Data Collection, Analysis and Reporting for Business | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Differentiate between different types of data sources / measurement types 2. Use descriptive statistical and data visualisation techniques to summarise business data sets 3. Explain the nature of sample error and calculate this error for a number of sample parameters 4. Choose the appropriate statistical techniques for testing a variety of statistical hypotheses 5. Interpret statistical output and effectively present the results of this output 6. Provide an overview of the role of statistics in an increasingly data driven business world. Demonstrate the role of statistics in designing sustainable strategies with focus on eco-efficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
1. Introduction to Data Analysis Role of Data Analysis in Business, Role of Technology in Data Analysis, Big Data and Data Analytics 2. Data Collection / Measurement Data Collection, Questionnaire Design, Reliability and Validity, Data Cleaning and Missing Data, Measurement Types, Data Types, 3. Descriptive Statistics Frequency Distributions, Measures of Central Tendency, Measures of Dispersion, Crosstabs and Correlation, Presentation, Graphical Tools and Data Vsiualsation 4. Probability Probability Laws, Empirical and A Priori Probabilities, Probability Distributions; Binomial and Poisson Distributions, Normal Probability Distribution 5. Statistical Estimation/Sampling Error Sampling Error, Sampling Distributions, Central Limit Theorem, Confidence Intervals for means and proportions, Selecting appropriate sample size 6. Hypothesis Testing / Statistical Tests What is a Statistical Test? General approach to statistical tests, Statistical Significance, Summary of Statistical Tests for Difference 7. Regression / Forecasting / Predictive Analytics Multivariate Analysis, Linear Regression. Over view of Forecasting Techniques; Time Series, Predictive Analytics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||