Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description Devices that utilise nano(bio)materials can improve health, reduce energy costs, create ultra-fast electronics. This module looks at how and why biology can be used to provide or inspire the design of new, functional materials; how biomaterials can be repurposed to provide solutions in a range of applications and understand how (bio)materials can be structured at the nanoscale using biological principles and how their structure can be interrogated using optical and electrochemical methods. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. 1. Understand the fundamental principles of nanobiomaterials, their properties and applications. 2. 2. Develop expertise in the synthesis and characterization of nanobiomaterials: Learn about different synthesis techniques and characterization methods of nanobiomaterials, including spectroscopy, microscopy, electrochemistry and other analytical techniques. 3. 3. Applications of nanobiomaterials in medicine: Understanding the use of nanobiomaterials in various medical applications, such as drug or vaccine delivery, tissue engineering, and medical imaging. 4. 4. Innovation and entrepreneurship: Understand how practical applications of nanobiomaterials are developed. 5. 5. Learn how interdisciplinary teams can address complex concepts and ideas to develop state-of-the-art devices. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Supramolecular and Interfacial Chemistry Supramolecular Assembly, Interfacial Supramolecular Assembly, Top Down Bottom up approaches to Nanotechnology. Surface coverage. Polymer characteristics and formation of polymer films. Self-Assembly, Langmuir Blodgett Methods. Photo and Electroactive Interfacial Films Photochemical and Electrochemical Addressability. Dynamics, mechanisms and energetics of energy, electron and ion transfer within interfacial coatings and supramolecular assemblies, plasmonics. Analytical Methods Applied to Interfacial Assemblies Electrochemical Methods, Spectroscopic Methods; HREELS, RAIRS, Raman spectroscopy. Surface topological/Imaging methods; STM, AFM, SEM and NSOM. Applications of Interfacial Films Surface Wetting, molecular Switching, Catalytic surfaces using nanostructured interfaces, electroanalytical (bio)sensor development, photochemical switching, solar energy conversion, batteries and fuel cells. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||