Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description Summary: Summarising and displaying statistical data in R; Introduction to probability: discrete sample spaces; axioms; addition and multiplication laws; conditional probability and independence; reliability of systems; Bayes theorem; • Discrete Random Variables: Bernouilli, hypergeometric, binomial, geometric and Poisson distributions; expectation; Sampling Inspection Schemes: Single and double sampling; operating characteristic function; average outgoing quality; consumers's and producer's risks. Continuous Random Variables: Uniform, exponential and normal distributions; normal approximation to binomial. Tchebechev's and Markov's inequalities • Aims: • To introduce the basic probability concepts and their applications to computer disciples; • To provide an understanding of discrete and continuous distributions; • To cover the essentials of the statistical computing system R. • To introduce the essentials of statistical analysis using R | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. At the end of the module the student will: • have a through understanding of the statistical computing system R; • understanding the basics of probability; • recognise problems that may be solved using the standard discrete and continuous statistical models; • know how to obtain expectations of discrete and continuous random variables; • have developed a package in R to generate pdfs and cdfs of discrete distributions • be able to carry out a basic statistical analysis in R, including measures of central tendency and dispersion, and graphical displays such as stem and leaf, and boxplots. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Indicative Syllabus Summarising and displaying statistical data in R; Introduction to probability: discrete sample spaces; axioms; addition and multiplication laws; conditional probability and independence; reliability of systems; Bayes theorem; • Discrete Random Variables: Bernouilli, hypergeometric, binomial, geometric and Poisson distributions; expectation; Sampling Inspection Schemes: Single and double sampling; operating characteristic function; average outgoing quality; consumers's and producer's risks. Continuous Random Variables: Uniform, exponential and normal distributions; normal approximation to binomial. Tchebechev's and Markov's inequalities • | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||