Latest Module Specifications
Current Academic Year 2025 - 2026
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description This module provides students with a practical and theoretical grounding in the following core topics in modern Natural Language Processing: language modelling, language analysis, information extraction and language understanding. Students will learn how these problems are tackled using supervised and semi-supervised machine learning, and they will gain hands-on experience developing machine-learning solutions during the laboratory sessions. Popular benchmark datasets will be employed, including ‘noisy’ datasets containing text from sources such as Twitter and reddit. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. 1E266EB2-6EF3-0001-C3FF-5C701A791840 2. Describe the applications of Natural Language Processing (NLP) in Data Science 4. 7,6 5. 1 6. 1E266EB2-8C95-0001-21A0-B29015C0C070 7. Illustrate how neural word embeddings underpin modern NLP systems 9. 8,9 10. 2 11. 1E266EB2-97B1-0001-696D-F7E210CC8B70 12. Develop an English language model 14. 8,9,10 15. 3 16. 1E266EB2-9DFD-0001-51D3-127017B067A0 17. Evaluate an English language model 19. 11,9 20. 4 21. 1E266EB2-AE4F-0001-9973-1170B0F51501 22. Develop an English part-of-speech tagger 24. 8,9,10 25. 5 26. 1E266EB2-B95A-0001-28A3-3CAF1344F670 27. Evaluate an English part-of-speech tagger 29. 11,9 30. 6 31. 1E266EB2-BF01-0001-546D-82301A7816FC 32. Develop a sentiment analysis system for English 34. 8,9,10 35. 7 36. 1E266EB2-C297-0001-3A8E-186775CC186F 37. Evaluate a sentiment analysis system for English 39. 11,9 40. 8 41. 1E266EB2-CB21-0001-D0B7-ADAF3160DE20 42. Develop an English question answer/reading comprehension system 44. 8,9,10 45. 9 46. 1E266EB2-CD08-0001-45CB-1A4EB3F012F2 47. Evaluate an English question answer/reading comprehension system 49. 11,9 50. 10 51. 1E266EB2-DA38-0001-5C97-5A611E201EEC 52. Explain the unsolved problems in NLP research 54. 10 55. 11 56. 1E266EB2-E5E1-0001-6EA0-E0061180A580 57. Summarize the ethical issues surrounding modern data-driven NLP 59. 10 60. 12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Language Modelling Next word prediction using n-gram language models, modern word embeddings including word2vec (Mikolov et al. 2013) and contextualised word embeddings such as BERT (Devlin et al. 2019). Generating text using language models Language analysis and data extraction Part-of-speech tagging, dependency parsing, named-entity recognition, semantic parsing. Sequence labelling and structured prediction using recurrent neural nets (LSTMs) and transformer networks Language understanding Sentiment analysis, automatic reading comprehension and question answering. Using information retrieval techniques in question answering. Using language analysis and extraction tools (see above) to improve baseline models for language understanding applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||