Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description This module aims to review and complement foundation statistical knowledge and to establish the context for a range of methods, used in the analysis of simple and complex systems. The emphasis is on an intuitive understanding of the principles and a practical ability to apply these to data examples drawn from diverse systems, rather than mathematical sophistication. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. 1DAAC59F-7E0B-0001-BE7A-1157140DD3C0 2. Explain the different levels of measurement and data types within the context of data analytics and data mining. 3. 4. 7,6 5. 1 6. 1DAAC59F-86FD-0001-A0A8-51108EF01811 7. Apply underlying probability principles and distribution examples for data analytics and data mining. 8. 9. 8 10. 2 11. 1DAAC59F-928E-0001-ADA9-17F316B51570 12. Distinguish between descriptive and inferential statistical quantities in the theory and practice of statistics and in data analytics. 13. 14. 9 15. 3 16. 1DAAC59F-9873-0001-2446-953F11F09160 17. Appraise the scope and robustness of common analytical methods for one to many samples. 18. 19. 11 20. 4 21. 1DAAC59F-9CF7-0001-2835-1C619660F110 22. Implement a range of analytical statistical techniques and interpret outcomes. 23. 24. 10 25. 5 26. 1DAAC59F-A3E5-0001-5F6E-9050F6931F6A 27. Select an appropriate statistical software, having been exposed to several examples. 28. 29. 11 30. 6 31. 1DAAC59F-A88A-0001-544A-1DC41840F4B0 32. Apply data analysis and data mining y techniques to a range of illustrative examples and case studies in big data and other real world systems. 33. 34. 8 35. 7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Measurement type, data types and quality. Consistency. Review of basis probability, probability distributions and their uses. Practical examples from relevant application : e.g. business , decision-making, queuing and service; bio-ict, - e.g. recombination and mapping functions, segregation, rare events and motif detection; social interaction, e.g. networks, and introduction to stochastic time series basis for event pattern recognition. Bayes Methods and revised probabilities from new data feedback/incorporation Estimation Classical vs MLE, Bayesian and outline of when to use Non-parametrics. Estimation and Hypothesis Testing for one to many-samples. ANOVA (basic Experimental Design principles), and equivalent for discrete data – e.g. Contingencies (for several populations), as well as extensions to linear regression. Applications Examples for above, inc. time series features for time-conditioned data in e.g. bio-ict, social nets, business and financial series. Software options | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books: None Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||