Latest Module Specifications
Current Academic Year 2025 - 2026
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description This module provides students with the mathematical techniques and skills (analytic and computational) to solve engineering problems involving multivariate calculus and second order ordinary differential equations with constant coefficients. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Solve second order ordinary differential equations with constant coefficients. 2. Differentiate and integrate standard functions of several variables. 3. Define and calculate selected quantities in vector calculus. 4. Formulate and solve engineering problems using the analytical techniques of differential equations, multi-variate and vector calculus. Verify analytical solutions using a computer algebra system (CAS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Fundamentals Vectors and matrix algebra. Differential equations First and second order with constant coefficients. Partial differentiation First, higher order and mixed partial derivatives; multi-variate Taylor series; stationary values; max/min problems; Hessian matrix; composite functions, chain rule and total derivative; material time derivative; change of independent variable; dependent and independent functions; Jacobian determinant. Modelling data and approximating functions Least squares; linearised models, optimisation using Lagrange multipliers; error analysis. Coordinate systems Cartesian; polar; spherical; transformations and Jacobian matrix. Introduction to common partial differential equations (PDEs) Wave, heat, Laplace and Schrodinger equations; configurations tractable to analytical solution. Operators Gradient of scalar field, divergence and curl of vector fields; directional derivative; Laplacian; irrotational and conservative vector fields. Calculus of vector-valued functions Arc-length; unit tangent and normal vectors; curvature; velocity. Double and triple integrals: formalism Line, area and volume integrals; applications to areas, moments and centre of mass Vector calculus Line, surface and volume integrals; Stokes, Greens and Divergence Theorems; applications: work, circulation and flux | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||