Latest Module Specifications
Current Academic Year 2025 - 2026
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description The course module will help the students understand the basics of Financial Econometrics and its application to Financial Data. It will further include conceptual underpinnings of Regression Models, Financial Time Series Analysis, and their application in the Financial World. The course uses data analysis tools to further strengthen the student's capability to enter the workforce and will thus enhance their employability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Understand the concepts of linear model and apply on a real data using data analysis tools 2. Explore the Financial Time Series, understand the trend, Linear association amongst the time Series 3. Learn to Forecast Univariate and Multivariate Financial Time Series, Understand the concept of Volatility Models 4. Exposure to Generalized Pareto Distribution for modeling extremities, and concepts such as Monte Carlo Simulation and Bootstrapping 5. Exposure to High Frequency Data and market Microstructure with utility of Machine Learning and Deep Learning Models | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Empirical characteristics of asset returns, time series modelling and forecasting Autocorrelation, skew, kurtosis, time aggregation, volatility clustering, long memory, leverage, trading volume.: Moving average processes, Autoregressive processes, ARMA processes Financial Time Series Forecasting, Vector Autoregression for Multivariate Forecasting Volatility Nonparametric measurement, Volatility Persistence, ARCH effect in Volatility series, GARCH-type models, forecasting, news impact curve, stochastic volatility, option implied volatility Statistics of extremes Extreme value theory, generalized extreme value distribution, threshold excedance, generalized Pareto distribution. Simulation methods Monte Carlo simulations, Variance reduction techniques, Bootstrapping, Random number generation Ultra high frequency data Market Microstructure, stylized facts, bid-ask bounce, irregularly spaced data, realized variance, jumps, Machine LEARNING | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||