Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description MS144 provides students with a working knowledge of arithmetic and geometric sequences and series; elements of differential calculus; matrices and linear systems; and eigenvalues and eigenvectors. The course also strives to develop students' understanding and ability to use the concepts and techniques of mathematics in specific applications such as loans and investments with level payments or deposits. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Describe and solve problems involving arithmetic and geometric sequences and series. 2. Apply selected annuity formulae to real-world situations and interpret the results. 3. Evaluate limits numerically and graphically and recognize where limits do not exist. 4. Calculate derivatives of functions from first principles and using the product, quotient and chain rules. 5. Solve systems of linear equations using Gaussian elimination and backward substitution. 6. Calculate the determinant, eigenvalues and associated eigenvectors of a given 3 by 3 matrix. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Sequences & Series Arithmetic and geometric sequences and series. Application of geometric series to loan re-payments and investments. Limits & Continuity Evaluation of limits numerically, using algebraic manipulation and limit rules; left-sided and right-sided limits; graphical and mathematical definitions of continuity. Differential Calculus Differentiation from first principles; use of the product rule, quotient rule and chain rule. Linear Systems Row-echelon form and Gaussian elimination with backward substitution; consistent and inconsistent linear systems and systems with parametric solutions. Eigenvalues & Eigenvectors Introduction to matrices; finding the determinant of 3 by 3 matrices; characteristic polynomials; finding eigenvalues and corresponding eigenvectors of 3 by 3 matrices. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||