Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description The module provides an introduction to the theory of Monte Carlo simulation, and gives nancial applications in the area of option pricing. The module includes substantial projects involving computer simulation in the MATLAB programming language. Prior familiarity with MATLAB is not assumed: sucient time is available in laboratories to acquaint students with the necessary code to complete the module. MS450M is aimed not only at masters students who have completed mathematical undergraduate pro- grammes, but also students who have completed undergraduate courses in other disciplines, including Engineering, Quantitative Finance and some elds of Science. MS450 is aimed at undergraduate students in both Actuarial Mathematics and in Financial Mathematics. The module neither requires a prior knowledge of, nor includes in its syllabus, stochastic calculus. Students are expected to attend lectures, tutorials, and tutor{supported laboratories. They will also engage in individual and group computer projects, facilitated by a tutor. Theoretical aspects of the course covered in lectures, as well as computational examples covered in tutorials, will be assessed by an end-of-semester examination. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. apply basic results from the limit theory of probability to determine the efficacy and efficiency of Monte Carlo simulations; 2. identify good methods for generating uniform pseudo random numbers. Understand the mathematical theory of Linear Congruential Generators in depth. 3. use uniform random numbers to simulate random numbers of a given distribution, including distri- butions of special importance in finance; 4. value various types of financial options using Monte Carlo simulation; quantify the quality of Monte Carlo estimators of derivative prices. 5. write MATLAB code to simulate random variables, empirically test pseudorandom number genera- tors, and price options. Avoid build-in routines from the Statistics Package in Matlab. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Error parsing Indicative Content: Control character error, possibly incorrectly encoded - 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| This course MS555 is for the Master Level and thus distinguished from the Bachelor Course MS455 in four points (a) first individual case study is shorter than the one for MS555 (b) length of final exam (150 minutes instead of 120 minutes) (c) number of questions in final exam: Choose 3/4 exam questions instead of 4 questions (d) learning outcomes. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||