Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description The purpose of this module is to introduce students to matrix algebra and linearity and to the notions of vector space and linear transformation. In this module students will gain a sound grasp of elementary linear algebra, and fundamental computational skills; it lays the foundations for further courses in linear algebra, calculus, probability and statistics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. demonstrate computational skills by solving wide range of drill problems involving topics in the indicative syllabus 2. state selected definitions and theorems related to the indicative syllabus 3. solve exercises that test understanding of these definitions and theorems 4. explain arguments used to prove selected theorems in special cases 5. Demonstrate an understanding of the mechanics of change of basis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Vectors: vectors in Euclidean space, linear combinations, dot product, orthogonality, one-dimensional projection, Cauchy-Schwarz Inequality. Matrices and systems of equations: Matrices, systems of linear equations, Gauss-Jordan elimination, invertible matrices, elementary matrices Dimension: subspaces, linear independence, basis, dimension, Rank-Nullity Theorem Vector spaces Abstract vector spaces and linear transformation. General rank-nullity Theorem. Matrix representations Coordinates, matrix representations, similarity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||