Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description The purpose of this module is to introduce to students who have successfully completed Linear Algebra I. The emphasis is on students gaining a sound knowledge of eigenvalues and eigenvectors of abstract vector spaces, Singular Value Decomposition, and Jordan Canonical Form. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Determinants Determinants of square matrices, ways to calculate them, their geometric meaning, their relationship to eigenvalues. Eigenvalues and eigenvectors Definitions of eigenvalues and eigenvectors, understanding what they represent in the context of a linear transformation, applications. Matrix decomposition Diagonalisation, singular value decomposition, Jordan canonical form General vector spaces Vector spaces over fields other than the reals, examples of different vector spaces e.g., function spaces, inner products, orthogonality, projection. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||