Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description The purpose of this module is for the student to demonstrate knowledge and understanding in fundamental concepts and calculation methods of dynamics of system of particles. The Newtonian, Lagrangian and Hamiltonian formulation of mechanics will be taught. The ultimate goal the derivation (and its study) of the equations of motion for elementary mechanical systems using all the above-mentioned formulations. A secondary goal is a demonstration of mathematical methods as applied to physics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. Define and understand basic concepts related to mechanical systems of particles 2. Describe and understand the three most important methodological approaches of Classical Mechanics (Newtonian, Lagrangian, Hamiltonian) 3. Apply classical dynamics methods to fundamental problems of classical mechanics (e.g. harmonic oscillators, Kepler's laws, particle collisions) 4. Understand and apply differential and integral analysis of functions (e.g. ordinary differential equations, function minimization) in physical (space-time) problems | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Basics of functional calculus Elements of differential and integral calculus of functions (ordinary differential equations and variational method of functions minimization) Basic concepts Introduction; systems of particles; mass density; centre of mass; the momentum of system of particles; angular momentum of system of particles. Newtonian dynamics (Newton's 2nd law) Force and potential fields Forces; kinetic and potential energy of particles; work and potential energy; conservation of energy for isolated systems. Newton's approach Newton's gravity and Coulomb's electric inverse square force laws, linear force law of small vibrations (harmonic oscillator) Fundamental mechanical systems Mass-spring system, physical pendulum, RLC electric systems as harmonic oscillators, Kepler's planar motion laws, Rutherford scattering Langrange's approach Lagrange equations for one-dimensional systems; the brachistochrone problem; Lagrange function of charged particles in the electromagnetic field. Hamilton's approach Hamilton’s principle; Hamilton’s equations of motion for simple one-dimensional systems; Poisson brackets; transition to quantum mechanics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other Resources None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||