Registry
Module Specifications
Archived Version 2016 - 2017
| |||||||||||||||||||||||||||||||||||||
Description This module focusses on the axiomatic approach to Euclidean geometry, paying particular attention to the role of this topic in the Irish second level mathematics syllabus. Non-Euclidean geometry will also be studied and students will use dynamic geometry software in the module. | |||||||||||||||||||||||||||||||||||||
Learning Outcomes 1. Describe the roles of defined, undefined and implicitly defined terms, axioms, lemmas, theorems and corollaries in a system of geometry. 2. Present proofs and constructions in Euclidean and non-Euclidean geometry 3. Solve problems in Euclidean geometry and plane trigonometry. 4. Describe applications and manifestations of geometry in the natural and man-made world. 5. Use dynamic software in teaching geometry. | |||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||
Indicative Content and
Learning Activities The terms and axioms of Euclidean geometryTopics in Euclidean geometrya. Length, distance, angles and angle measure b. Equivalent characterisations of congruent triangles c. Parallel and perpendicular lines; parallelograms and quadrilaterals d. Ratios and similarity e. Area and Pythagoras’s theorem f. Circles and special triangle pointsConstructions in Euclidean geometryApplications of Euclidean geometryNon-Euclidean geometriesUsing Geogebra | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
Indicative Reading List
| |||||||||||||||||||||||||||||||||||||
Other Resources None | |||||||||||||||||||||||||||||||||||||
Programme or List of Programmes | |||||||||||||||||||||||||||||||||||||
Archives: |
|