DCU Home | Our Courses | Loop | Registry | Library | Search DCU
<< Back to Module List

Latest Module Specifications

Current Academic Year 2025 - 2026

Module Title Wireless Communications in Fading Channels
Module Code EEN1077 (ITS: EE519)
Faculty Electronic Engineering School Engineering & Computing
NFQ level 9 Credit Rating 7.5
Description

This module aims to develop a fundamental understanding of techniques which make possible reliable digital communications over wireless fading channels. Building on the analysis of simple digital modulation schemes over noisy non-fading channels it then introduces the concept of fading, along with its key physical characterisations (fast, slow, flat and frequency selective). These are derived in terms of the underpinning propagation phenomena and quantified in terms of key channel statistical metrics such as coherence bandwidth and coherence time. The module then examines the use of diversity techniques to improve the performance of digital modulation in fading channels. These include time, frequency and space diversity. In particular we shall examine the use of multiple antenna (MIMO) technology and space time coding. Emerging channel modelling techniques such as ray tracing will be introduced.

Learning Outcomes

1. �������� ��� ���Evaluate the performance of digital modulation schemes for noisy AWGN channels and band-limited channels.
2. Describe the physical processes that generate fading as well as the simple metrics used to characterize channels such as coherence bandwith and coherence time.
3. Describe the wireless channel as a linear time varying system and derive a discrete-time baseband model
4. Analyse the performance of signalling techniques in a variety of fading channels.
5. Describe and analyse the effectiveness of time, frequency and space diversity techniques
6. Analyse the use of CDMA and OFDM to allow multiple access and manage interference.
7. Extend statistical channel models to the MIMO case and derive simple beamforming and spatial multiplexing techniques.
8. Numerically model selected topics in digital wireless communications using Matlab.


WorkloadFull time hours per semester
TypeHoursDescription
Lecture36Classroom lectures
Assignment Completion36Assignments and homeworks
Independent Study116Independent study and exam preparation
Total Workload: 188
Section Breakdown
CRN20725Part of TermSemester 2
Coursework0%Examination Weight0%
Grade Scale40PASSPass Both ElementsY
Resit CategoryRC1Best MarkN
Module Co-ordinatorConor BrennanModule Teacher
Assessment Breakdown
TypeDescription% of totalAssessment Date
Completion of online activityWebwork-based homeworks10%n/a
AssignmentMatlab assignments15%n/a
Formal ExaminationEnd of semester exam75%End-of-Semester
Reassessment Requirement Type
Resit arrangements are explained by the following categories;
RC1: A resit is available for both* components of the module.
RC2: No resit is available for a 100% coursework module.
RC3: No resit is available for the coursework component where there is a coursework and summative examination element.

* ‘Both’ is used in the context of the module having a coursework/summative examination split; where the module is 100% coursework, there will also be a resit of the assessment

Pre-requisite None
Co-requisite None
Compatibles None
Incompatibles None

All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml

Indicative Content and Learning Activities

Review of required mathematics:
Fourier analysis, probability and random processes, systems.

Introduction to digital communications and wireless communications
source coding, digital modulation, propagation, channel coding, fundamental constraints, capacity, radiowave propagation, cellular systems and networks,

Baseband digital communications:
binary bandwidth limited signals and inter-symbol interference, noise and bit errors, adaptive equalization. Band pass digital systems: Binary PSK and QPSK.

The wireless channel:
physical modelling for wireless channels, reflections, the effect of mobility, the channel as a linear time varying system, Doppler spread and coherence time, delay spread and coherence bandwidth, statistical channel models, Rayleigh and Ricean fading,

Coherent detection in Rayleigh fading channels.
Time diversity – repetition coding, frequency diversity: ISI equalization, direct sequence spread spectrum, orthogonal frequency division multiplexing. Channel estimation and non coherent detection.

Modelling of MIMO fading channels:
channel matrix, statistical modelling in angular domain, degrees of freedom and diversity. Deterministic channel modelling and ray tracing.

Indicative Reading List

Books:
  • David Tse and Pramod Viswanath: 0, Fundamentals of Wireless Communication, Cambridge University Press, 978-052184527
  • Andrea Goldsmith: 0, Wireless Communications, Cambridge University Press, 978-052183716
  • Andreas F Molisch: 0, Wireless Communications, Wiley-IEEE, 978-047074186
  • Simon Haykin: 2013, Digital Communication Systems, Wiley, 800, 9780471647355
  • John Proakis: 0, Digital Communications, McGraw Hill, 978007295716


Articles:
None
Other Resources

None

<< Back to Module List View 2024/25 Module Record for EE519