Latest Module Specifications
Current Academic Year 2025 - 2026
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Description This module introduces students to some different general aspects of mathematics, including the nature and use of logic in mathematics, mathematical language, mathematical modelling and problem solving in mathematics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Learning Outcomes 1. 1D646C14-15F0-0001-D346-1518C17013E0 2. Apply logic in mathematical arguments 3. 4. 9,10 5. 1 6. 1E37C099-FFB4-0001-2A38-12E014807470 7. Demonstrate an appreciation of the importance and nature of proof in mathematics 8. 9. 22,7,8,10 10. 2 11. 1D646C13-E516-0001-7DF1-1C4075D08BB0 12. Demonstrate insights on different views of the nature of mathematics 13. 14. 9,10 15. 3 16. 1D646C14-044D-0001-C3B2-C8A4184317A1 17. Develop proficiencies in problem solving and in the teaching of problem solving 18. 19. 17,20,7,16,8,21,9 20. 4 21. 1D646C14-0DBF-0001-9197-78FE15F27700 22. Learn how to use mathematical language correctly 23. 24. 7,6,9,10 25. 5 26. 1D995636-BBB2-0001-7D7C-1085FF3D1B10 27. Develop an awareness of the concepts of growth and fixed mindsets and how these impact the learning of mathematics 28. 29. 16,23,11,9 30. 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Content and Learning Activities
Mathematics: history & philosophy Introduction to philosophies of mathematics and their historical development, with a focus on the emergence of axiomatic approaches and mathematics as a problem solving activity Mathematical logic, language and mathematical proof. The role of definitions in mathematics; mathematical statements; the need for mathematical proof; mathematical logic; different types of proof: induction, working forwards-backwards, proof by contradiction, proof by contrapositive argument; nomenclature: conjectures, lemmas, propositions, theorems, corollaries etc; the philosophy of mathematical proof; the creation of new mathematics. Mathematical problem solving. Structured approaches to problem solving in mathematics: Mason's Rubric Writing. Approaches to teaching problem-solving in mathematics. Designing mathematical problems. Mathematical Mindsets Fixed and growth mindsets in mathematics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Indicative Reading List Books:
Articles: None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Resources
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||