Registry
Module Specifications
Archived Version 2011 - 2012
| |||||||||||||||||||||||||||||||||||||||||
Description This module introduces students to the theory, practice and application of calculus of several variables. The module builds on the first-year module on calculus of one variable. Students will learn how to differentiate and integrate functions of several variables, and how the interplay of differentiation and integration leads to the integral theorems. The module teaches essential know-how and skills to understand more advanced methods in analysis in general and in probability in particular. | |||||||||||||||||||||||||||||||||||||||||
Learning Outcomes 1. state selected definitions and theorems from the module content 2. demonstrate understanding of selected definitions from the module content 3. prove (parts of) selected theorems from the module content 4. solve a wide range of problems from the module content | |||||||||||||||||||||||||||||||||||||||||
All module information is indicative and subject to change. For further information,students are advised to refer to the University's Marks and Standards and Programme Specific Regulations at: http://www.dcu.ie/registry/examinations/index.shtml |
|||||||||||||||||||||||||||||||||||||||||
Indicative Content and
Learning Activities Differential Calculus Limits and Continuity; directional and partial derivatives; affine approximation and derivative; chain rule; higher derivatives; mean value theorem and Taylor s theorem; determination of local maxima and minima; Lagrange multipliers; statements of inverse and implicit function theorems. Integral Calculus Double integrals; Fubini s theorem; Jacobians and change of variables formula; triple integrals. Integral Theorems Green's theorem; statements of the Gauss theorem and the Stokes theorem. | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
Indicative Reading List
| |||||||||||||||||||||||||||||||||||||||||
Other Resources None | |||||||||||||||||||||||||||||||||||||||||
Programme or List of Programmes |
- See the module specification for MS205 in 2003 - 2004
- See the module specification for MS205 in 2004 - 2005
- See the module specification for MS205 in 2005 - 2006
- See the module specification for MS205 in 2006 - 2007
- See the module specification for MS205 in 2007 - 2008
- See the module specification for MS205 in 2008 - 2009
- See the module specification for MS205 in 2009 - 2010
- See the module specification for MS205 in 2010 - 2011
- See the module specification for MS205 in 2011 - 2012
- See the module specification for MS205 in 2012 - 2013
- See the module specification for MS205 in 2013 - 2014
- See the module specification for MS205 in 2014 - 2015
- See the module specification for MS205 in 2015 - 2016
- See the module specification for MS205 in 2016 - 2017
- See the module specification for MS205 in 2017 - 2018
- See the module specification for MS205 in 2018 - 2019
- See the module specification for MS205 in 2019 - 2020
- See the module specification for MS205 in 2020 - 2021
- See the module specification for MS205 in 2021 - 2022
- See the module specification for MS205 in 2022 - 2023
- See the module specification for MS205 in 2023 - 2024
- See the module specification for the current year